List of observed phenomena unexplained by the Standard Model that the Cosmology of the Quarkbase will address one by one

Carlos Omeñaca Prado

10. October 2025

Listado de fenómenos observados que el Modelo Estándar no explica y que la Cosmología del Quarkbase abordará uno por uno

Contents

In	Introduction	
1	Leptonic Mass Hierarchy (e, μ, τ) .	2
2	Neutrino Oscillations	3
3	Color Confinement and the Hadronic Transition	3
4	Matter-Antimatter Asymmetry	4
5	Ultra-High-Energy Cosmic Rays (UHECR)	4
6	Quantization of Spacetime at the Planck Scale	5
7	Cosmic Filaments and Self-Organized Plasma Structures	5
Ο.	Overview	

Introduction

The **Standard Model** of particle physics accurately describes countless processes, yet it does not explain the origin of many of its constants, hierarchies, and symmetries. **Quarkbase Cosmology (QBC)** emerges as a unifying framework that conceives the universe not as a collection of point-like particles, but as a vibrant fabric of fundamental units—quarkbase (Qb)—interacting with a dynamic plasmatic vacuum.

This document outlines a list of phenomena that current physics cannot explain, and which we will address using the Quarkbase Theory in subsequent publications

1 Leptonic Mass Hierarchy (e, μ, τ) .

Unexplained in the Standard Model: there is no physical reason why the electron, muon, and tau should differ so drastically in mass.

Based on Quarkbase Theory: If leptons are color-neutral resonant states formed by quasi-neutralized quarkbase pairs $(Q_b$ -anti Q_b), their masses would arise from the same stiffness matrix that governs quarks, but under different boundary conditions (no color coupling). Thus (e, μ, τ) correspond to distinct vibrational modes of a Q_b -anti Q_b system within the vacuum plasma.

Key formulas:

1. Total mass (for a $(Q_b - \overline{Q_b})$ state without color coupling):

$$M_{\ell} = 2m_0 + E_{\text{vib}}, \qquad E_{\text{vib}} = \sum_i \frac{1}{2}\hbar\omega_i.$$

(Interpretation: different vibrational modes ω_i correspond to different lepton masses.)

2. Mode condition (color–free boundary condition, $k_{\text{color}} \rightarrow 0$):

$$\det(K_{\rm lept}(k_{\rm env})/m_0 - \omega^2 \mathbb{I}) = 0,$$

where K_{lept} is the stiffness matrix of the $(Q_b - \overline{Q_b})$ pair. Distinct eigenfrequencies ω correspond to the observed leptons (e, μ, τ) .

References

[1] Omeñaca Prado, Carlos (2025). Explaining Quark Flavors and Masses through Quark-base Cosmology. figshare. Preprint.

2 Neutrino Oscillations

Unexplained: neutrino oscillations require tiny but unexplained masses.

Based on Quarkbase Theory: Neutrinos may be longitudinal modes of vibration of the vacuum plasma. Their oscillations arise naturally from beatings between nearly degenerate frequencies of Q_b resonances — phase shifts between local vacuum pressures produce conversions ($\nu_e \leftrightarrow \nu_\mu \leftrightarrow \nu_\tau$) without invoking Dirac mass terms.

Key formulas:

1. Beating between two nearby modes (conversion probability of "beating" type):

$$P_{a \to b}(t) = \sin^2 \left(\frac{\Delta \omega \, t}{2}\right), \qquad \Delta \omega = \omega_2 - \omega_1.$$

(Interpretation: neutrino oscillation as interference between vacuum vibrational modes.)

2. Mapping to the standard parametrization (order of magnitude): for ultrarelativistic states,

$$\Delta\omega \simeq \frac{\Delta m^2}{2E\hbar} \quad \Rightarrow \quad P \sim \sin^2\Bigl(\frac{\Delta m^2 L}{4E\hbar}\Bigr),$$

which links the frequency difference of the quarkbase system to the effective masssquared difference used in neutrino oscillation experiments.

3 Color Confinement and the Hadronic Transition

In QCD: confinement is known numerically but lacks an analytic foundation.

Based on Quarkbase Theory: Color confinement follows from the self-pressure of the vacuum plasma, which forbids stable configurations with more than three coupled Q_b . Adding a fourth introduces unstable eigenmodes.

Key formulas:

1. Coupled Hamiltonian of an $N-Q_b$ system (as introduced in the manuscript):

$$H_q = \sum_{i=1}^N \left(\frac{p_i^2}{2m_0} + \tfrac{1}{2} k_i x_i^2 \right) + \sum_{i < j} k_{ij} (x_i - x_j)^2.$$

(Stability arises from the positivity of the eigenvalues of the stiffness matrix K.)

2. Stability condition (normal-mode frequencies):

 $\omega_i^2 = \lambda_i \quad \text{(eigenvalues of } K/m_0) \; ; \qquad \text{if any } \lambda_i \leq 0 \Rightarrow \text{instability (deconfined state)}.$

(Adding a fourth Q_b may drive some λ negative, explaining why only configurations with $N \leq 3$ are stable.)

4 Matter-Antimatter Asymmetry

Observation: the Universe is matter-dominated despite CP-symmetric laws.

Based on Quarkbase Theory: If the vacuum plasma reacts nonlinearly to the creation of Q_b and anti- Q_b , the damping term may differ for positive and negative phases of (Ψ) , creating a **phase-asymmetric dissipation** that favors one sign.

Key formulas:

1. Dynamical equation with asymmetric damping:

$$m_{\Psi}\ddot{\Psi} + \Gamma(\Psi)\dot{\Psi} + V'(\Psi) = S(t),$$

if $\Gamma(\Psi) \neq \Gamma(-\Psi)$, a preferential damping arises that can generate a sign bias.

2. Effective term breaking CP symmetry in the coupling (illustrative):

$$\mathcal{L}_{\mathrm{eff}} \supset \varepsilon_{\mathrm{CP}} \, \Psi \, \mathcal{O}_{\mathrm{SM}} \quad (\mathcal{O}_{\mathrm{SM}}: \, \, \mathrm{Standard \,\, Model \,\, operators}),$$

an asymmetric source (non-vanishing under $\Psi \to -\Psi$) can favor matter over antimatter.

References

[1] Omeñaca Prado, Carlos (2025). Explaining Quark Flavors and Masses through Quark-base Cosmology. figshare. Preprint. Omeñaca Prado, Carlos (2025). Relativistic Invariance and Experimental Constraints on Quarkbase Cosmology. figshare. Preprint.

5 Ultra-High-Energy Cosmic Rays (UHECR)

Observation: particles exceed the Greisen–Zatsepin–Kuzmin (GZK) limit.

Based on Quarkbase Theory: In regions where the vacuum plasma density is low, vibrational modes of (Ψ) can release stored energy through local resonances, ejecting particles with extreme energies — a quantum-cosmological resonance rather than standard acceleration.

Key formulas:

1. Energy released by local vibrational resonance:

$$E_{\rm release} \sim \hbar \, \Delta \omega_{\rm loc} \quad (\Delta \omega_{\rm loc} = {
m local \ variation \ of \ vacuum \ modes}).$$

(A resonance of the Ψ field can convert vibrational energy into particle creation.)

2. Resonance condition (schematic):

 $\omega_{\rm vacuum}({\rm mode}) \simeq \omega_{\rm threshold} \quad \Rightarrow \quad {\rm decoupling} \ \to \ {\rm particles} \ {\rm with} \ E \gg 10^{19} \, {\rm eV}.$

(The theory predicts regions where ω shifts, releasing stored vibrational energy.)

6 Quantization of Spacetime at the Planck Scale

Problem: quantum gravity has not unified the continuum with quantum discreteness.

Based on Quarkbase Theory: Because the vacuum plasma is an elastic-vibrational medium, quantization occurs in frequency space, not in geometric coordinates. Reality is discrete in resonant modes $(\omega_0, 2\omega_0, 3\omega_0, ...)$. Key formulas:

1. Discrete spectrum of vacuum resonances:

$$\omega_n = n\,\omega_0, \qquad n \in \mathbb{Z}^+,$$

(the fundamental quantum of the medium is a characteristic frequency ω_0).

2. Associated effective length or scale:

$$\lambda_n = \frac{c}{\omega_n} = \frac{c}{n\omega_0} \quad \Rightarrow \quad \ell_{\rm eff} \sim \frac{c}{\omega_0},$$

linking a physical scale to the fundamental frequency (potentially related to quantum–gravitational scales if $\hbar\omega_0\sim E_{\rm P}$).

7 Cosmic Filaments and Self-Organized Plasma Structures

Observation: large-scale filaments in the Universe are not fully reproduced by standard gravity simulations.

Based on Quarkbase Theory: If the vacuum plasma sustains collective modes that couple to baryonic matter, filaments may form as interference patterns of the field (Ψ) . Key formulas:

1. Interference intensity of collective modes:

$$I(\mathbf{x}) \propto \Big| \sum_{j} A_{j} e^{i(\mathbf{k}_{j} \cdot \mathbf{x} + \phi_{j})} \Big|^{2}.$$

(Regions of constructive interference correspond to filamentary structures in the vacuum pressure field.)

2. Force on the baryonic plasma due to the vacuum–pressure gradient:

$$\mathbf{F}_{\mathrm{vac}} \sim -\nabla P_{\mathrm{vac}}, \qquad P_{\mathrm{vac}} \propto |\Psi(\mathbf{x})|^2 \sim I(\mathbf{x}).$$

(This couples the interference patterns of Ψ to the plasma dynamics and may guide the formation of cosmic filaments.)

Overview

Observed Phenomenon	Possible Cause according to the Quarkbase Theory
Leptonic hierarchy	Distinct Qb-antiQb vibrational modes
Neutrino oscillations	Phase beating between Qb modes
Color confinement	Saturation of vacuum coupling $(N \le 3)$
Matter-antimatter asymmetry	Phase-biased vacuum damping
UHE cosmic rays	Release of vibrational energy from Ψ
Spacetime quantization	Discreteness in vibrational frequencies
Cosmic filaments	Interference of vacuum-plasma waves