Gravitation Without Mass – A Geometric Pressure Interpretation of Curvature

Gravitation Without Mass

This work reconstructs the full mathematical structure of Einsteinian relativity from a physical medium: a frictionless scalar-pressure ether described by the field Ψ(x,t). Instead of postulating the invariance of c and Lorentz symmetry, the analysis shows that both emerge from the finite reorganisation speed of this medium. The Lorentz factor, relativistic kinematics, energy–momentum relations, and gravitational weak-field optics are recovered without invoking mass or geometric axioms. Einstein’s formalism remains valid, but its ontology is reversed: relativity becomes the macroscopic behaviour of a coherent pressure medium rather than a primitive geometric postulate.The theory derives nuclear and atomic constants (Rydberg value, hydrogen binding energy), predicts the next stable element of the periodic table (Z ≈ 155), and introduces an alternative fission mechanism based on resonance of the Ψ pressure field.
This preprint provides the foundational narrative of Quarkbase Cosmology: the emergence of structure, resonance, and coherence from compact quarkic configurations interacting with the etheric Ψ field.

Macroscopic, Hand-held Magnetic Monopole Device

Macroscopic, Hand-held Magnetic Monopole Device

This work reconstructs the full mathematical structure of Einsteinian relativity from a physical medium: a frictionless scalar-pressure ether described by the field Ψ(x,t). Instead of postulating the invariance of c and Lorentz symmetry, the analysis shows that both emerge from the finite reorganisation speed of this medium. The Lorentz factor, relativistic kinematics, energy–momentum relations, and gravitational weak-field optics are recovered without invoking mass or geometric axioms. Einstein’s formalism remains valid, but its ontology is reversed: relativity becomes the macroscopic behaviour of a coherent pressure medium rather than a primitive geometric postulate.The theory derives nuclear and atomic constants (Rydberg value, hydrogen binding energy), predicts the next stable element of the periodic table (Z ≈ 155), and introduces an alternative fission mechanism based on resonance of the Ψ pressure field.
This preprint provides the foundational narrative of Quarkbase Cosmology: the emergence of structure, resonance, and coherence from compact quarkic configurations interacting with the etheric Ψ field.

Effective Graphene Monopole and Its Application to Water Transport

Effective Graphene Monopole

This work reconstructs the full mathematical structure of Einsteinian relativity from a physical medium: a frictionless scalar-pressure ether described by the field Ψ(x,t). Instead of postulating the invariance of c and Lorentz symmetry, the analysis shows that both emerge from the finite reorganisation speed of this medium. The Lorentz factor, relativistic kinematics, energy–momentum relations, and gravitational weak-field optics are recovered without invoking mass or geometric axioms. Einstein’s formalism remains valid, but its ontology is reversed: relativity becomes the macroscopic behaviour of a coherent pressure medium rather than a primitive geometric postulate.The theory derives nuclear and atomic constants (Rydberg value, hydrogen binding energy), predicts the next stable element of the periodic table (Z ≈ 155), and introduces an alternative fission mechanism based on resonance of the Ψ pressure field.
This preprint provides the foundational narrative of Quarkbase Cosmology: the emergence of structure, resonance, and coherence from compact quarkic configurations interacting with the etheric Ψ field.

Ψ DIODE CORE -Mk VI Hyperconductive Thermal Replacement Unit

Graphene diode core for laser

This work reconstructs the full mathematical structure of Einsteinian relativity from a physical medium: a frictionless scalar-pressure ether described by the field Ψ(x,t). Instead of postulating the invariance of c and Lorentz symmetry, the analysis shows that both emerge from the finite reorganisation speed of this medium. The Lorentz factor, relativistic kinematics, energy–momentum relations, and gravitational weak-field optics are recovered without invoking mass or geometric axioms. Einstein’s formalism remains valid, but its ontology is reversed: relativity becomes the macroscopic behaviour of a coherent pressure medium rather than a primitive geometric postulate.The theory derives nuclear and atomic constants (Rydberg value, hydrogen binding energy), predicts the next stable element of the periodic table (Z ≈ 155), and introduces an alternative fission mechanism based on resonance of the Ψ pressure field.
This preprint provides the foundational narrative of Quarkbase Cosmology: the emergence of structure, resonance, and coherence from compact quarkic configurations interacting with the etheric Ψ field.

Seven New Classes of LASER Diodes Enabled by Graphene and the Psi-Field: A Quarkbase Cosmology Framework

Seven New Classes of LASER Diodes Enabled by Graphene

This work reconstructs the full mathematical structure of Einsteinian relativity from a physical medium: a frictionless scalar-pressure ether described by the field Ψ(x,t). Instead of postulating the invariance of c and Lorentz symmetry, the analysis shows that both emerge from the finite reorganisation speed of this medium. The Lorentz factor, relativistic kinematics, energy–momentum relations, and gravitational weak-field optics are recovered without invoking mass or geometric axioms. Einstein’s formalism remains valid, but its ontology is reversed: relativity becomes the macroscopic behaviour of a coherent pressure medium rather than a primitive geometric postulate.The theory derives nuclear and atomic constants (Rydberg value, hydrogen binding energy), predicts the next stable element of the periodic table (Z ≈ 155), and introduces an alternative fission mechanism based on resonance of the Ψ pressure field.
This preprint provides the foundational narrative of Quarkbase Cosmology: the emergence of structure, resonance, and coherence from compact quarkic configurations interacting with the etheric Ψ field.

Ψ-Cell – Industrializable Coherent-Pressure Energy Unit

Ψ-Cell: Industrializable Coherent-Pressure Energy Unit

This work reconstructs the full mathematical structure of Einsteinian relativity from a physical medium: a frictionless scalar-pressure ether described by the field Ψ(x,t). Instead of postulating the invariance of c and Lorentz symmetry, the analysis shows that both emerge from the finite reorganisation speed of this medium. The Lorentz factor, relativistic kinematics, energy–momentum relations, and gravitational weak-field optics are recovered without invoking mass or geometric axioms. Einstein’s formalism remains valid, but its ontology is reversed: relativity becomes the macroscopic behaviour of a coherent pressure medium rather than a primitive geometric postulate.The theory derives nuclear and atomic constants (Rydberg value, hydrogen binding energy), predicts the next stable element of the periodic table (Z ≈ 155), and introduces an alternative fission mechanism based on resonance of the Ψ pressure field.
This preprint provides the foundational narrative of Quarkbase Cosmology: the emergence of structure, resonance, and coherence from compact quarkic configurations interacting with the etheric Ψ field.

Superconductivity and Thermal Hyperconductivity in Graphene from Quarkbase Cosmology

The Quarkbase Cosmology Explanation of Superconductivity and Thermal Hyperconductivity in Graphene

This work reconstructs the full mathematical structure of Einsteinian relativity from a physical medium: a frictionless scalar-pressure ether described by the field Ψ(x,t). Instead of postulating the invariance of c and Lorentz symmetry, the analysis shows that both emerge from the finite reorganisation speed of this medium. The Lorentz factor, relativistic kinematics, energy–momentum relations, and gravitational weak-field optics are recovered without invoking mass or geometric axioms. Einstein’s formalism remains valid, but its ontology is reversed: relativity becomes the macroscopic behaviour of a coherent pressure medium rather than a primitive geometric postulate.The theory derives nuclear and atomic constants (Rydberg value, hydrogen binding energy), predicts the next stable element of the periodic table (Z ≈ 155), and introduces an alternative fission mechanism based on resonance of the Ψ pressure field.
This preprint provides the foundational narrative of Quarkbase Cosmology: the emergence of structure, resonance, and coherence from compact quarkic configurations interacting with the etheric Ψ field.

Curvature-Tunable Absorbance in Graphene: A Quarkbase-Cosmology Prediction

Curvature-Tunable Absorbance in Graphene

This work reconstructs the full mathematical structure of Einsteinian relativity from a physical medium: a frictionless scalar-pressure ether described by the field Ψ(x,t). Instead of postulating the invariance of c and Lorentz symmetry, the analysis shows that both emerge from the finite reorganisation speed of this medium. The Lorentz factor, relativistic kinematics, energy–momentum relations, and gravitational weak-field optics are recovered without invoking mass or geometric axioms. Einstein’s formalism remains valid, but its ontology is reversed: relativity becomes the macroscopic behaviour of a coherent pressure medium rather than a primitive geometric postulate.The theory derives nuclear and atomic constants (Rydberg value, hydrogen binding energy), predicts the next stable element of the periodic table (Z ≈ 155), and introduces an alternative fission mechanism based on resonance of the Ψ pressure field.
This preprint provides the foundational narrative of Quarkbase Cosmology: the emergence of structure, resonance, and coherence from compact quarkic configurations interacting with the etheric Ψ field.

Simultaneous Enhancement of Electrical and Thermal Conductivity in Graphene through Excitation of the Etheric Longitudinal Mode

Simultaneous Enhancement of Electrical and Thermal Conductivity in Graphene

This work reconstructs the full mathematical structure of Einsteinian relativity from a physical medium: a frictionless scalar-pressure ether described by the field Ψ(x,t). Instead of postulating the invariance of c and Lorentz symmetry, the analysis shows that both emerge from the finite reorganisation speed of this medium. The Lorentz factor, relativistic kinematics, energy–momentum relations, and gravitational weak-field optics are recovered without invoking mass or geometric axioms. Einstein’s formalism remains valid, but its ontology is reversed: relativity becomes the macroscopic behaviour of a coherent pressure medium rather than a primitive geometric postulate.The theory derives nuclear and atomic constants (Rydberg value, hydrogen binding energy), predicts the next stable element of the periodic table (Z ≈ 155), and introduces an alternative fission mechanism based on resonance of the Ψ pressure field.
This preprint provides the foundational narrative of Quarkbase Cosmology: the emergence of structure, resonance, and coherence from compact quarkic configurations interacting with the etheric Ψ field.

Quantum Levitation – A Dual Interpretation from Standard Physics and Quarkbase Cosmology

Quantum Levitation

This work reconstructs the full mathematical structure of Einsteinian relativity from a physical medium: a frictionless scalar-pressure ether described by the field Ψ(x,t). Instead of postulating the invariance of c and Lorentz symmetry, the analysis shows that both emerge from the finite reorganisation speed of this medium. The Lorentz factor, relativistic kinematics, energy–momentum relations, and gravitational weak-field optics are recovered without invoking mass or geometric axioms. Einstein’s formalism remains valid, but its ontology is reversed: relativity becomes the macroscopic behaviour of a coherent pressure medium rather than a primitive geometric postulate.The theory derives nuclear and atomic constants (Rydberg value, hydrogen binding energy), predicts the next stable element of the periodic table (Z ≈ 155), and introduces an alternative fission mechanism based on resonance of the Ψ pressure field.
This preprint provides the foundational narrative of Quarkbase Cosmology: the emergence of structure, resonance, and coherence from compact quarkic configurations interacting with the etheric Ψ field.